A Limit Law for the Ground State of Hill's Equation

H. P. McKean ${ }^{1}$

Received May 14. 1993: final October 13, 1993

Abstract

It is proved that the ground state $A(L)$ of $(-1) \times$ the Schrödinger operator with white noise potential, on an interval of length L, subject to Neumann, periodic, or Dirichlet conditions, satisfies the law

$$
\lim _{L\lceil x} P\left[(L / \pi) A^{1 / 2} \exp \left(-\frac{8}{3} A^{3 / 2}\right)>x\right]= \begin{cases}1 & \text { for } x<0 \\ e^{-x} & \text { for } x \geqslant 0\end{cases}
$$

KEY WORDS: Schrödinger's operator; spectrum; diffusion.

1. INTRODUCTION

Let Q be Hill's operator ${ }^{2}-D^{2}+\mathfrak{q}$, in which \mathfrak{q} is the standard white noise on a circle $0 \leqslant x<L$ of large perimeter L. It is to be proved that, if $\Lambda(L)$ is the ground state of $-Q$ under (a) Neumann, (b) periodic, or (c) Dirichlet conditions, then

$$
\lim _{L \rightarrow \infty} P\left[(L / \pi) \Lambda^{1 / 2}(L) \exp \left(-\frac{8}{3} \Lambda^{3 / 2}(L)>x\right]= \begin{cases}1 & \text { for } \quad x<0 \\ e^{-x} & \text { for } \quad x \geqslant 0\end{cases}\right.
$$

which is to say that $A(L)$ is well approximated by

$$
(0.519+)(\lg L)^{2 / 3}+\left[(0.116+) \lg _{2} L-(0.510-)-(0.346+) \lg x\right](\lg L)^{-1 / 3}
$$

with an exponential variable $x . \Lambda($ Neumann $) \leqslant \Lambda($ periodic $)<\Lambda($ Dirichlet $)$, so it suffices to deal with the first and the third. The proof employs a diffusion introduced and exploited by Halperin ${ }^{(5)}$; compare Section 4 below.

[^0]
2. DIRICHLET CASE

Fix $\lambda \in R$ and let $y_{2}(x, \lambda)$ be the sine-like solution of $Q f=\lambda f$ with $y_{2}(0)=0$ and $y_{2}^{\prime}(0)=1$. The motion $p(x)=y_{2}^{\prime}(x, \lambda) / y_{2}(x, \lambda)$ satisfies $\mathfrak{p}^{\prime}=q-\left(\lambda+p^{2}\right)$, i.e., it is the diffusion with infinitesimal operator

$$
G=(1 / 2) \partial^{2} / \partial p^{2}-\left(\lambda+p^{2}\right) \partial / \partial p=\partial / \partial m(p) \partial / \partial s(p)
$$

in which one sees the so-called scale $d s(p)=\exp \left[2\left(p^{3} / 3+\lambda p\right)\right] d p$ and speed measure $d m(p)=2 \exp \left[-2\left(p^{3} / 3+\lambda p\right)\right] d p$. The process starts at $\mathfrak{p}(0)=+\infty$, this being an entrance barrier ${ }^{3}$; it hits the exit barrier ${ }^{4}-\infty$ at the first root x_{1} of $y_{2}(x, \lambda)=0$, then reappears at $+\infty$, and so on; see Ito and McKean ${ }^{(6)}$ for such matters.

We have $P[-\Lambda(L)>\lambda]=P\left[x_{1}>L\right]$, the latter event being the same as: no root of $y_{2}(x, \lambda)=0$ for $0 \leqslant x \leqslant L$. This probability is to be estimated for $L \uparrow \infty$ and $\lambda \downarrow-\infty$. To see what is happening, write $k p(k x)$ in place of $\mathfrak{p}(x)$ with $k=\sqrt{-\lambda}$. Then G is changed to $(-\lambda)^{-3 / 2}(1 / 2) \partial^{2} / \partial p^{2}-$ ($p^{2}-1$) $\partial / \partial p$, from which it appears that the diffusion acts like a chain of three states, $-\infty, 0,+\infty$, the motion being (almost) deterministic except for a pause (tunneling time) at 0 alias $-1 \leqslant p \leqslant+1$, whose mean must be appraised. This could be done by the methods of Friedlin and Vencel, ${ }^{(1)}$ as reported in ref. 2, p. 326, ${ }^{5}$ but I prefer another proof, without such scaling.

Now $E\left(\exp \left(-\alpha x_{1}\right)\right)$ is the reciprocal of $h_{+}(-\infty, \alpha), h_{+}$being the decreasing positive solution of $G h=\alpha h$ with $h(\infty)=1$ (see, e.g., ref. 6):

$$
h_{+}(p, \alpha)=1+\alpha \int_{p}^{\infty} d s \int_{p_{1}}^{\infty} d m+\alpha^{2} \int_{p}^{\infty} d s \int_{p_{1}}^{\infty} d m \int_{p_{2}}^{\infty} d s \int_{p_{3}}^{\infty} d m+\text { etc. }
$$

Let $c(-\lambda)$ be the mean passage time

$$
E\left(x_{1}\right)=\lim _{x \not 0} \frac{1}{\alpha} E\left(1-\exp \left(-\alpha x_{1}\right)\right)=\int_{-\infty}^{\infty} d s \int_{p}^{\infty} d m
$$

and note the appraisal ${ }^{6}$

$$
c(-\lambda)=(2 \pi)^{1 / 2} \int_{0}^{\infty} e^{-\left(q^{3} / 6+2 i, 4\right)} \frac{d q}{\sqrt{q}}=\frac{\pi}{\sqrt{-\lambda}} \exp \frac{8}{3}(-\lambda)^{3 / 2} \times[1+o(1)]
$$

It is to be proved that $h_{+}(-\infty, \alpha / c)$ tends to $1+\alpha$ as $\lambda \downarrow-\infty$; the limit law for $\Lambda(L)$ is an easy consequence of that: indeed, the limit law

[^1]states that $L / c(-A)$ tends to an exponential variable, i.e., that e^{-x} is the limit, as $L \uparrow \infty$, of
\[

$$
\begin{aligned}
P[L / c(-\Lambda)>x] & =P[(L / x)<-\Lambda]=P\left[x<x_{1} / c\right] \\
\text { taken for } \lambda & =-c^{-1}(L / x) \downarrow-\infty
\end{aligned}
$$
\]

Proof. $1 / h_{+}(-\infty, \alpha / c)$ is the Laplace transform of a probability measure on $[0, \infty)$, so it is enough to make the proof for $0<\alpha \leqslant 1 / 2$, say. But now

$$
\begin{aligned}
0 \leqslant & h_{+}\left(-\infty, \frac{\alpha}{c}\right)-(1+\alpha) \\
\leqslant & \frac{1}{4 c^{2}} \int_{-\infty}^{\infty} d s \int_{p_{1}}^{\infty} d m \int_{p_{2}}^{\infty} d s \int_{p_{3}}^{\infty} d m \\
& +\frac{1}{8 c^{3}} \int_{-\infty}^{\infty} d s \int_{p_{1}}^{\infty} d m \int_{p_{2}}^{\infty} d s \int_{p_{3}}^{\infty} d m \int_{p_{4}}^{x_{2}} d s \int_{p_{5}}^{\infty} d m \quad \text { etc. } \\
\leqslant & \frac{1}{2 c^{2}} \int_{-\infty}^{\infty} d s \int_{p_{1}}^{\infty} d m \int_{p_{2}}^{\infty} d s \int_{p_{3}}^{\infty} d m \\
= & \frac{1}{2 c^{2}} \int_{0}^{\infty} e^{-\left(q_{1}^{3} / 6+2 \lambda q_{1}\right)} d q_{1} \int_{0}^{\infty} e^{-\left(q_{2}^{3} / 6+2 q_{2}\right)} d q_{2} \\
& \times \int_{-\infty}^{\infty} e^{-2 q_{1} p_{1}^{2}} d p_{1} \int_{q_{1} / 2+p_{1}+q_{2} / 2} e^{-2 q_{2} p_{2}^{2}} d p_{2}
\end{aligned}
$$

to which the main contribution comes from a saddle point at $q_{1}=q_{2}=$ $2 \sqrt{-\lambda}$, as in the appraisal of c noted before, and the whole is exponentially small for $\lambda \downarrow-\infty$. It would be unprofitable to report the simple details.

3. NEUMANN CASE

The proof is similar. The diffusion is now $\mathfrak{p}(x)=y_{1}^{\prime}(x, \lambda) / y_{1}(x, \lambda), y_{1}$ being the cosine-like solution of $Q f=\lambda f$ with $y_{1}(0)=1$ and $y_{1}^{\prime}(0)=0$; it is nothing but the old process starting not from $\mathfrak{p}(0)=+\infty$, but from $p(0)=0$, and one has $P[-\Lambda(L)>\lambda]=P\left[x_{1}>L \& p(L)>0\right]$, the latter event being the same as: no root of $y_{1}(x, \lambda)$ for $0 \leqslant x \leqslant L$ and $y_{1}^{\prime}(L, \lambda)>0$. Now $-\Lambda(L)$ is a decreasing function of L, so the same is true of $P\left[x_{1}>L\right.$ etc.], and it suffices, for the limit law, to check that

$$
\int_{0}^{\infty} P\left[x_{1}>x c \& p(x c)>0\right] e^{-\alpha x} d x \quad \text { tends to } \frac{1}{1+\alpha} \text { as } \quad \lambda \downarrow-\infty
$$

Proof. The left-hand side may be evaluated as

$$
\begin{aligned}
\int_{0}^{\infty} P\left[x_{1}>x \& \mathfrak{p}(x)>0\right] e^{-(x / c) x} \frac{d x}{c} & =\frac{h_{-}(0)}{c} \int_{0}^{\infty} h_{+} d m \\
& =-\frac{h_{-}(0) h_{+}^{\prime}(0)}{c}
\end{aligned}
$$

in which $h_{+}=h_{+}(p, \alpha / c)$ is as before and h_{-}is the allied increasing solution of $G h=(\alpha / c) h$ with $h(-\infty)=0$ and $h_{-}^{\prime} h_{+}-h_{-} h_{+}^{\prime}=1 .{ }^{7}$ Now

$$
\begin{aligned}
h_{-}\left(p, \frac{\alpha}{c}\right)= & s(p)+\frac{\alpha}{c} \int_{-\infty}^{p} d s \int_{-\infty}^{p_{1}} s d m \\
& +\frac{\alpha^{2}}{c^{2}} \int_{-\infty}^{p} d s \int_{-\infty}^{p_{1}} d m \int_{-\infty}^{p_{2}} d s \int_{-\infty}^{p_{3}} s d m \text { etc. }
\end{aligned}
$$

if the normalization is ignored, and, from the symmetry $p \rightarrow-p$ which exchanges s and $m / 2$, one sees that $h_{-}^{\prime}(0)=h_{+}(0)$ and $h_{+}^{\prime}(0)=$ $-2(\alpha / c) h_{-}(0)$, whence the quantity to be studied is the reciprocal of $\alpha+(c / 2) h_{+}^{2}(0) / h_{-}^{2}(0)$ with the unnormalized function h_{-}. The proof is finished by checking three small items confirming that $(c / 2) h_{+}^{2}(0) / h_{-}^{2}(0)=$ $1+o(1)$.

Item 1: Note that, for $\lambda \downarrow-\infty, c=2 \int_{-\infty}^{\infty} d s \int_{\rho}^{\infty} d m$ may be identified with $2 s^{2}(0)$; this is done by saddle point, as before.

Item 2:

$$
\begin{aligned}
h_{+}(0) & =1+(\alpha / c) \int_{0}^{\infty} d s \int_{p}^{\infty} h_{+} d m \\
& =1+c^{-1} \times O\left[h_{+}(0) \int_{0}^{\infty} d s \int_{p}^{\infty} d m\right]
\end{aligned}
$$

and

$$
\begin{aligned}
c^{-1} \int_{0}^{\infty} d s \int_{p}^{\infty} d m & =\int_{0}^{\infty} d q \int_{0}^{\infty} e^{-2 p q(p+q)} d p / 2 s^{2}(0) \\
& =o(1)
\end{aligned}
$$

This shows that $h_{+}(0)=1+o(1)$.

[^2]Item 3:

$$
\begin{aligned}
h_{-}(0) & =-(c / 2 \alpha) h_{+}^{\prime}(0) \\
& =(1 / 2) \int_{0}^{\infty} h_{+} d m \sim(1 / 2) \int_{0}^{\infty} d m=s(0)
\end{aligned}
$$

by symmetry, so $(2 / c) h_{-}^{2}(0) / s^{2}(0)=1+o(1)$.

4. INTEGRATED DENSITY OF STATES

The present method of diffusion affords a pretty complete picture of the statistics of the spectrum of Q with simple proofs. The integrated density of states $N(\lambda)=\lim _{L \dagger \infty} L^{-1} \times($ the number of eigenvalues $\leqslant \lambda)$ provides a nice additional example: roughly, it is half the winding number about the origin of the path $\left[y_{2}(x, \lambda), y_{2}^{\prime}(x, \lambda)\right]: 0 \leqslant x<L$, alias the number of passages of $p(x): 0 \leqslant x<L$ from $+\infty$ to $-\infty$ and, if this number is n, then L approximates the sum x_{n} of the passage times, so that $N(L)=\lim _{n \uparrow \infty} n / x_{n}=1 / E\left(x_{1}\right)$, by the law of large numbers-in short,

$$
\frac{1}{N(\lambda)}=(2 \pi)^{1 / 2} \int_{0}^{\infty} e^{-\left(q^{3 / 6+i .4)}\right.} \frac{d q}{\sqrt{q}}
$$

The fact is due to Frisch and Lloyd, ${ }^{(3)}$ and the pretty proof to Halperin ${ }^{(5)}$; compare Lifshits et al. (ref. 7, pp. 172-174) and also Fukushima and Nakao. ${ }^{(4)}$

ACKNOWLEDGMENTS

The work reported here was performed at the Courant Institute of Mathematical Sciences, with the partial support of the National Science Foundation, under NSF Grant DMS-9112654, which is gratefully acknowledged.

REFERENCES

1. M. I. Friedlin and A. D. Vencel, On small random perturbations of dynamical systems, Russ. Math. Surv. 25:1-56 (1970).
2. A. Friedman, Stochastic Differential Equations and Applications, Vol. 2 (Academic Press, New York, 1976).
3. H. L. Frisch and S. P. Lloyd, Electron levels in a one-dimensional random lattice, Phys. Rev. 120:1179-1194 (1960).
4. M. Fukushima and S. Nakao, On the spectra of the Schrödinger operator with white-noise potential, Z. Wahrsch. Verw. Geb. 37:267-274 (1977).
5. B. Halperin, Green's function for a particle in a one-dimensional random potential, Phys. Rev. 139:104-107 (1965).
6. K. Ito and H. P. McKean, Diffusion Processes and Their Sample Paths (Springer-Verlag, Berlin, 1965).
7. I. M. Lifshits, S. A. Gradeskul, and L. A. Pastur, Introduction to the Theory of Disordered Systems (Wiley, New York, 1988).

[^0]: ${ }^{1}$ Courant Institute of Mathematical Science, New York, New York.
 ${ }^{2} D$ signifies differentiation by x.

[^1]: ${ }^{3} \int_{0}^{x} d m \int_{-x}^{n} d s<\infty$, which means that paths come in from $+\infty$.
 ${ }_{5}^{4} \int_{-x}^{0} d s \int^{x} d m<\infty$, which means that paths actually arrive at $-\infty$ at a finite time.
 ${ }^{5} \mathrm{I}$ owe these references to Varadhan (private communication).
 ${ }^{6}$ The integral concentrates at the saddle point $q=2 \sqrt{-\lambda}$ which makes the verification easy.

[^2]: ${ }^{7}$ The prime signifies differentiation with regard to the scale $s(p)=\int_{-\infty}^{p} \exp \left[2\left(q^{3} / 3+\lambda q\right)\right] d q$.

