A Limit Law for the Ground State of Hill's Equation

H. P. McKean¹

Received May 14, 1993; final October 13, 1993

It is proved that the ground state $\Lambda(L)$ of $(-1) \times$ the Schrödinger operator with white noise potential, on an interval of length L, subject to Neumann, periodic, or Dirichlet conditions, satisfies the law

$$\lim_{L \downarrow \infty} P[(L/\pi) \Lambda^{1/2} \exp(-\frac{8}{3} \Lambda^{3/2}) > x] = \begin{cases} 1 & \text{for } x < 0\\ e^{-x} & \text{for } x \ge 0 \end{cases}$$

KEY WORDS: Schrödinger's operator; spectrum; diffusion.

1. INTRODUCTION

Let Q be Hill's operator² $-D^2 + q$, in which q is the standard white noise on a circle $0 \le x < L$ of large perimeter L. It is to be proved that, if $\Lambda(L)$ is the ground state of -Q under (a) Neumann, (b) periodic, or (c) Dirichlet conditions, then

$$\lim_{L \uparrow \infty} P[(L/\pi) \Lambda^{1/2}(L) \exp(-\frac{8}{3}\Lambda^{3/2}(L) > x] = \begin{cases} 1 & \text{for } x < 0 \\ e^{-x} & \text{for } x \ge 0 \end{cases}$$

which is to say that $\Lambda(L)$ is well approximated by

$$(0.519+)(\lg L)^{2/3} + [(0.116+)\lg_2 L - (0.510-) - (0.346+)\lg x](\lg L)^{-1/3}$$

with an exponential variable x. Λ (Neumann) $\leq \Lambda$ (periodic) $< \Lambda$ (Dirichlet), so it suffices to deal with the first and the third. The proof employs a diffusion introduced and exploited by Halperin⁽⁵⁾; compare Section 4 below.

1227

¹ Courant Institute of Mathematical Science, New York, New York.

² D signifies differentiation by x.

2. DIRICHLET CASE

Fix $\lambda \in R$ and let $y_2(x, \lambda)$ be the sine-like solution of $Qf = \lambda f$ with $y_2(0) = 0$ and $y'_2(0) = 1$. The motion $p(x) = y'_2(x, \lambda)/y_2(x, \lambda)$ satisfies $p' = q - (\lambda + p^2)$, i.e., it is the diffusion with infinitesimal operator

$$G = (1/2) \frac{\partial^2}{\partial p^2} - (\lambda + p^2) \frac{\partial}{\partial p} = \frac{\partial}{\partial m(p)} \frac{\partial}{\partial s(p)}$$

in which one sees the so-called scale $ds(p) = \exp[2(p^3/3 + \lambda p)] dp$ and speed measure $dm(p) = 2 \exp[-2(p^3/3 + \lambda p)] dp$. The process starts at $p(0) = +\infty$, this being an entrance barrier³; it hits the exit barrier⁴ $-\infty$ at the first root x_1 of $y_2(x, \lambda) = 0$, then reappears at $+\infty$, and so on; see Itô and McKean⁽⁶⁾ for such matters.

We have $P[-\Lambda(L) > \lambda] = P[x_1 > L]$, the latter event being the same as: no root of $y_2(x, \lambda) = 0$ for $0 \le x \le L$. This probability is to be estimated for $L \uparrow \infty$ and $\lambda \downarrow -\infty$. To see what is happening, write $k\mathfrak{p}(kx)$ in place of p(x) with $k = \sqrt{-\lambda}$. Then G is changed to $(-\lambda)^{-3/2} (1/2) \partial^2 / \partial p^2 - \partial^2 / \partial p^2$ $(p^2-1)\partial/\partial p$, from which it appears that the diffusion acts like a chain of three states, $-\infty$, 0, $+\infty$, the motion being (almost) deterministic except for a pause (tunneling time) at 0 alias $-1 \le p \le +1$, whose mean must be appraised. This could be done by the methods of Friedlin and Vencel,⁽¹⁾ as reported in ref. 2, p. 326,⁵ but I prefer another proof, without such scaling.

Now $E(\exp(-\alpha x_1))$ is the reciprocal of $h_+(-\infty, \alpha)$, h_+ being the decreasing positive solution of $Gh = \alpha h$ with $h(\infty) = 1$ (see, e.g., ref. 6):

$$h_+(p,\alpha) = 1 + \alpha \int_p^\infty ds \int_{p_1}^\infty dm + \alpha^2 \int_p^\infty ds \int_{p_1}^\infty dm \int_{p_2}^\infty ds \int_{p_3}^\infty dm + \text{etc.}$$

Let $c(-\lambda)$ be the mean passage time

$$E(\mathbf{x}_1) = \lim_{\alpha \downarrow 0} \frac{1}{\alpha} E(1 - \exp(-\alpha \mathbf{x}_1)) = \int_{-\infty}^{\infty} ds \int_{p}^{\infty} dm$$

and note the appraisal⁶

$$c(-\lambda) = (2\pi)^{1/2} \int_0^\infty e^{-(q^{3/6} + 2\lambda q)} \frac{dq}{\sqrt{q}} = \frac{\pi}{\sqrt{-\lambda}} \exp\frac{8}{3} (-\lambda)^{3/2} \times [1 + o(1)]$$

It is to be proved that $h_{+}(-\infty, \alpha/c)$ tends to $1 + \alpha$ as $\lambda \downarrow -\infty$; the limit law for $\Lambda(L)$ is an easy consequence of that: indeed, the limit law

- $\int_{0}^{\infty} dm \int_{-\infty}^{p} ds < \infty$, which means that paths come in from $+\infty$. $\int_{-\infty}^{0} ds \int_{-\infty}^{\infty} dm < \infty$, which means that paths actually arrive at $-\infty$ at a finite time.
- ⁵ I owe these references to Varadhan (private communication).

⁶ The integral concentrates at the saddle point $q = 2\sqrt{-\lambda}$ which makes the verification easy.

Ground State of Hill's Equation

$$P[L/c(-\Lambda) > x] = P[(L/x) < -\Lambda] = P[x < \mathbf{x}_1/c]$$

taken for $\lambda = -c^{-1}(L/x) \downarrow -\infty$

Proof. $1/h_+(-\infty, \alpha/c)$ is the Laplace transform of a probability measure on $[0, \infty)$, so it is enough to make the proof for $0 < \alpha \le 1/2$, say. But now

$$0 \leq h_{+} \left(-\infty, \frac{\alpha}{c}\right) - (1 + \alpha)$$

$$\leq \frac{1}{4c^{2}} \int_{-\infty}^{\infty} ds \int_{p_{1}}^{\infty} dm \int_{p_{2}}^{\infty} ds \int_{p_{3}}^{\infty} dm$$

$$+ \frac{1}{8c^{3}} \int_{-\infty}^{\infty} ds \int_{p_{1}}^{\infty} dm \int_{p_{2}}^{\infty} ds \int_{p_{3}}^{\infty} dm \int_{p_{4}}^{\infty} ds \int_{p_{5}}^{\infty} dm \quad \text{etc.}$$

$$\leq \frac{1}{2c^{2}} \int_{-\infty}^{\infty} ds \int_{p_{1}}^{\infty} dm \int_{p_{2}}^{\infty} ds \int_{p_{3}}^{\infty} dm$$

$$= \frac{1}{2c^{2}} \int_{0}^{\infty} e^{-(q_{1}^{2}/6 + 2\lambda q_{1})} dq_{1} \int_{0}^{\infty} e^{-(q_{2}^{2}/6 + 2\lambda q_{2})} dq_{2}$$

$$\times \int_{-\infty}^{\infty} e^{-2q_{1}p_{1}^{2}} dp_{1} \int_{q_{1}/2 + p_{1} + q_{2}/2} e^{-2q_{2}p_{2}^{2}} dp_{2}$$

to which the main contribution comes from a saddle point at $q_1 = q_2 = 2\sqrt{-\lambda}$, as in the appraisal of c noted before, and the whole is exponentially small for $\lambda \downarrow -\infty$. It would be unprofitable to report the simple details.

3. NEUMANN CASE

The proof is similar. The diffusion is now $p(x) = y'_1(x, \lambda)/y_1(x, \lambda)$, y_1 being the cosine-like solution of $Qf = \lambda f$ with $y_1(0) = 1$ and $y'_1(0) = 0$; it is nothing but the old process starting not from $p(0) = +\infty$, but from p(0) = 0, and one has $P[-\Lambda(L) > \lambda] = P[x_1 > L \& p(L) > 0]$, the latter event being the same as: no root of $y_1(x, \lambda)$ for $0 \le x \le L$ and $y'_1(L, \lambda) > 0$. Now $-\Lambda(L)$ is a decreasing function of L, so the same is true of $P[x_1 > L$ etc.], and it suffices, for the limit law, to check that

$$\int_0^\infty P[\mathbf{x}_1 > xc \ \& \ \mathsf{p}(xc) > 0] \ e^{-\alpha x} \ dx \qquad \text{tends to} \quad \frac{1}{1+\alpha} \quad \text{as} \quad \lambda \downarrow -\infty$$

McKean

Proof. The left-hand side may be evaluated as

$$\int_{0}^{\infty} P[\mathbf{x}_{1} > x \& \mathbf{p}(x) > 0] e^{-(\alpha/c)x} \frac{dx}{c} = \frac{h_{-}(0)}{c} \int_{0}^{\infty} h_{+} dm$$
$$= -\frac{h_{-}(0) h'_{+}(0)}{c}$$

in which $h_{+} = h_{+}(p, \alpha/c)$ is as before and h_{-} is the allied increasing solution of $Gh = (\alpha/c)h$ with $h(-\infty) = 0$ and $h'_{-}h_{+} - h_{-}h'_{+} = 1$.⁷ Now

$$h_{-}\left(p,\frac{\alpha}{c}\right) = s(p) + \frac{\alpha}{c} \int_{-\infty}^{p} ds \int_{-\infty}^{p_{1}} s \, dm$$
$$+ \frac{\alpha^{2}}{c^{2}} \int_{-\infty}^{p} ds \int_{-\infty}^{p_{1}} dm \int_{-\infty}^{p_{2}} ds \int_{-\infty}^{p_{3}} s \, dm \quad \text{etc}$$

if the normalization is ignored, and, from the symmetry $p \to -p$ which exchanges s and m/2, one sees that $h'_{-}(0) = h_{+}(0)$ and $h'_{+}(0) = -2(\alpha/c) h_{-}(0)$, whence the quantity to be studied is the reciprocal of $\alpha + (c/2) h_{+}^{2}(0)/h_{-}^{2}(0)$ with the *un*normalized function h_{-} . The proof is finished by checking three small items confirming that $(c/2) h_{+}^{2}(0)/h_{-}^{2}(0) =$ 1 + o(1).

Item 1: Note that, for $\lambda \downarrow -\infty$, $c = 2 \int_{-\infty}^{\infty} ds \int_{p}^{\infty} dm$ may be identified with $2s^{2}(0)$; this is done by saddle point, as before.

Item 2:

$$h_{+}(0) = 1 + (\alpha/c) \int_{0}^{\infty} ds \int_{p}^{\infty} h_{+} dm$$
$$= 1 + c^{-1} \times O\left[h_{+}(0) \int_{0}^{\infty} ds \int_{p}^{\infty} dm\right]$$

and

$$c^{-1} \int_0^\infty ds \int_p^\infty dm = \int_0^\infty dq \int_0^\infty e^{-2pq(p+q)} dp/2s^2(0)$$

= o(1)

This shows that $h_+(0) = 1 + o(1)$.

⁷ The prime signifies differentiation with regard to the scale $s(p) = \int_{-\infty}^{p} \exp[2(q^3/3 + \lambda q)] dq$.

Item 3:

$$h_{-}(0) = -(c/2\alpha) h'_{+}(0)$$
$$= (1/2) \int_{0}^{\infty} h_{+} dm \sim (1/2) \int_{0}^{\infty} dm = s(0)$$

by symmetry, so $(2/c) h_{-}^{2}(0)/s^{2}(0) = 1 + o(1)$.

4. INTEGRATED DENSITY OF STATES

The present method of diffusion affords a pretty complete picture of the statistics of the spectrum of Q with simple proofs. The integrated density of states $N(\lambda) = \lim_{L \uparrow \infty} L^{-1} \times$ (the number of eigenvalues $\leq \lambda$) provides a nice additional example: roughly, it is half the winding number about the origin of the path $[y_2(x, \lambda), y'_2(x, \lambda)]$: $0 \leq x < L$, alias the number of passages of p(x): $0 \leq x < L$ from $+\infty$ to $-\infty$ and, if this number is *n*, then *L* approximates the sum x_n of the passage times, so that $N(L) = \lim_{n \uparrow \infty} n/x_n = 1/E(x_1)$, by the law of large numbers—in short,

$$\frac{1}{N(\lambda)} = (2\pi)^{1/2} \int_0^\infty e^{-(q^3/6 + \lambda q)} \frac{dq}{\sqrt{q}}$$

The fact is due to Frisch and Lloyd,⁽³⁾ and the pretty proof to Halperin⁽⁵⁾; compare Lifshits *et al.* (ref. 7, pp. 172–174) and also Fukushima and Nakao.⁽⁴⁾

ACKNOWLEDGMENTS

The work reported here was performed at the Courant Institute of Mathematical Sciences, with the partial support of the National Science Foundation, under NSF Grant DMS-9112654, which is gratefully acknowledged.

REFERENCES

- M. I. Friedlin and A. D. Vencel, On small random perturbations of dynamical systems, Russ. Math. Surv. 25:1-56 (1970).
- 2. A. Friedman, Stochastic Differential Equations and Applications, Vol. 2 (Academic Press, New York, 1976).
- 3. H. L. Frisch and S. P. Lloyd, Electron levels in a one-dimensional random lattice, *Phys. Rev.* 120:1179-1194 (1960).

- M. Fukushima and S. Nakao, On the spectra of the Schrödinger operator with white-noise potential, Z. Wahrsch. Verw. Geb. 37:267-274 (1977).
- 5. B. Halperin, Green's function for a particle in a one-dimensional random potential, *Phys. Rev.* 139:104-107 (1965).
- 6. K. Ito and H. P. McKean, *Diffusion Processes and Their Sample Paths* (Springer-Verlag, Berlin, 1965).
- 7. I. M. Lifshits, S. A. Gradeskul, and L. A. Pastur, Introduction to the Theory of Disordered Systems (Wiley, New York, 1988).